Aloha :)
$$z=j+\frac{1+j}{3+j}=j+\frac{(1+j)(3-j)}{(3+j)(3-j)}=j+\frac{3+3j-j-j^2}{9-j^2}=j+\frac{4+2j}{10}$$$$\phantom{z}=\frac{4}{10}+\frac{12}{10}j=\frac{2}{5}+\frac{6}{5}j$$
$$|z|^2=\frac{4}{25}+\frac{36}{25}=\frac{40}{25}=\frac{4}{25}\cdot10\quad\Rightarrow\quad |z|=\sqrt{|z|^2}=\frac{2}{5}\sqrt{10}$$$$\varphi=\arctan\left(\frac{6/5}{2/5}\right)=\arctan\left(3\right)\approx71,5651^o$$
$$z=\frac{2}{5}\sqrt{10}e^{j\,71,5651^o}=\frac{2}{5}\sqrt{10}\left(\cos71,5651^o+j\,\sin71,5651^o\right)$$
Der Winkel ist recht krumm, vielleicht lässt du einfach \(\arctan(3)\) als Winkel stehen?