Aloha :)
$$I_a=\int\limits_0^{2\pi}\vec f\,\frac{d\vec x}{dt}\,dt=\int\limits_0^{2\pi}\vec f(x=\cos t, y=\sin t)\,\frac{d\vec x}{dt}\,dt=\int\limits_0^{2\pi}\binom{-\sin t}{\cos t}\binom{-\sin t}{\cos t}dt$$$$\phantom{I_a}=\int\limits_0^{2\pi}(\sin^2t+\cos^2t)dt=\int\limits_0^{2\pi}1\,dt=\left[t\right]_0^{2\pi}=2\pi$$$$I_b=\int\limits_0^{\pi/2}\vec f\,\frac{d\vec x}{dt}\,dt=\int\limits_0^{\pi/2}\vec f(x=\cos t, y=\sin t)\,\frac{d\vec x}{dt}\,dt$$$$\phantom{I_b}=\int\limits_0^{\pi/2}\binom{-\sin t}{\cos t}\binom{-\sin t}{\cos t}dt$$$$\phantom{I_a}=\int\limits_0^{\pi/2}(\sin^2t+\cos^2t)dt=\int\limits_0^{\pi/2}1\,dt=\left[t\right]_0^{\pi/2}=\frac{\pi}{2}$$Bei der (c) müssen wir zunächst den Weg \(\vec x(t)\) parametrisieren:$$\vec x(t)=\binom{1}{0}+t\,\left[\binom{0}{1}-\binom{1}{0}\right]=\binom{1}{0}+t\,\binom{-1}{1}=\binom{1-t}{t}\quad;\quad t\in[0;1]$$$$I_c=\int\limits_0^1\vec f\,\frac{d\vec x}{dt}\,dt=\int\limits_0^1\vec f(x=1-t, y=t)\,\frac{d\vec x}{dt}\,dt=\int\limits_0^1\binom{-t}{1-t}\binom{1-t}{t}dt$$$$\phantom{I_a}=\int\limits_0^1(-t+t^2+t-t^2)dt=\int\limits_0^10\,dt=0$$
d) Die Start- und Enpunkte der Wege sind:
bei a) \(\binom{1}{0}\to\binom{1}{0}\quad;\quad\) bei b) \(\binom{1}{0}\to\binom{0}{1}\quad;\quad\) bei c) \(\binom{1}{0}\to\binom{0}{1}\)
Offensichtlich ist \(\vec f\) nicht konservativ. Bei (a) sind Start- und Endpunkt identisch. Bei einem konservativen Feld müsste daher das Wegintegral \(=0\) sein. Bei (b) und (c) geht man auf unterschiedlichen Wegen vom selben Startpunkt zum selben Zielpunkt und der Wert des Wegintegrals ist unterschiedlich. Bei einem konservativen Feld ist das Wegintegral unabhängig vom Weg.