Aloha :)
1-ter Fall:
A ist von 7 Uhr bis 11 Uhr unterwegs. A ist also 4h mit dem Tempo \(v_a\) unterwegs.
B ist von 8 Uhr bis 11 Uhr unterwegs. B ist also 3h mit dem Tempo \(v_b\) unterwegs.
Die zurückgelegte Gesamtstrecke von beiden muss 624km lang sein:$$4\,v_a+3\,v_b=624$$
2-ter Fall:
A ist von 5 Uhr bis 11 Uhr unterwegs. A ist also 6h mit dem Tempo \(v_a\) unterwegs.
B ist von 9,5 Uhr bis 11 Uhr unterwegs. B ist also 1,5h mit dem Tempo \(v_b\) unterwegs.
Die zurückgelegte Gesamtstrecke von beiden muss wieder 624km lang sein:$$6\,v_a+1,5\,v_b=624$$
Wir haben ein kleines Gleichungssystem zu lösen:
$$\begin{array}{rrrl}v_a & v_b & = & \text{Operation}\\\hline4 & 3 & 624 & \\6 & 1,5 & 624 & \cdot 2\\\hline4 & 3 & 624 & \\12 & 3 & 1248 & -\text{Zeile }1\\\hline4 & 3 & 624 & \\8 & 0 & 624 & :8\\\hline4 & 3 & 624 & -4\cdot\text{Zeile }2\\1 & 0 & 78 & \\\hline0 & 3 & 312 & :3\\1 & 0 & 78 & \\\hline0 & 1 & 104 & \\1 & 0 & 78 &\\\hline \end{array}$$Damit haben wir die Geschwindigkeiten:
$$v_a=78\,\frac{\text{km}}{\text h}\quad;\quad v_b=104\,\frac{\text{km}}{\text h}$$