0 Daumen
789 Aufrufe

Aufgabe:


Problem/Ansatz:

Zeigen Sie, dass für M ⊆ R folgende Aussagen äquivalent sind:

̈
 (a) M ist abgeschlossen.
(b) Für jede konvergente Folge (a_n)_n in M, d.h. an ∈ M für alle n, gilt lim n→∞ an ∈ M.

Avatar von

Vom Duplikat:

Titel: M ⊆ R folgende Aussagen äquivalent sind:

Stichworte: abgeschlossen

Aufgabe:


Problem/Ansatz:

Zeigen Sie, dass für M ⊆ R folgende Aussagen äquivalent sind:

̈
 (a) M ist abgeschlossen.
(b) Für jede konvergente Folge (an)n in M, d.h. an ∈ M für alle n, gilt lim n→∞ an ∈ M.

Bitte Fragen nur einmal abschicken, Suche und die Rubrik "ähnliche Fragen" verwenden.

Wie habt ihr "Abgeschlossenheit" denn definiert? Da du von einer Menge \(M\subseteq \mathbb{R}\) ausgehst, vermute ich, dass diese Frage aus der Analysis 1 stammt, wo noch nicht tief auf Topologie eingegangen wird.

wo finde ich die Antwort?

Benutze bitte die Suche. Die Rublik "ähnliche Fragen" wird anscheinend nicht mehr so häufig den verbesserten Tags und Überschriften angepasst.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community