Gegeben sei der Punkt (x0,y0)=(1,0) ∈ ℝ2 und die Ellipse:
$$ E:=\left\{(x, y) \in \mathbb{R}^{2}: \frac{x^{2}}{9}+y^{2}=1\right\} $$
Berechnen Sie dist( \( \left(x_{0}, y_{0}\right) ; E \) ). Bestimmen Sie auch den maximalen Abstand von \( \left(x_{0}, y_{0}\right) \) zu den
Punkten der Ellipse, also \( \max \left\{\left|\left(x_{0}, y_{0}\right)-(x, y)\right|:(x, y) \in E\right\} \)
Um diese Aufgabe zu lösen wurde die Zielfunktion f(x,y)=(x-1)2+y2 herangezogen, aber ich weiß nicht wie man anhand der Aufgabenstellung darauf kommt. Könntet ihr mir helfen?
LG