\( \int\limits_{0}^{a} \) sin(\( \frac{1}{8} \)x⁻₋ − \( \frac{π}{2} \))dx
1. \( \frac{1}{8} \)x⁻₋ − \( \frac{π}{2} \) durch y ersetzen
2. y' = \( \frac{dy}{dx} \) = \( \frac{1}{8} \)
3. dy = \( \frac{1}{8} \) dx ↔ dx = 8dy
= \( \int\limits_{y(0)}^{y(a)} \) sin(y)dx
= \( \int\limits_{0}^{\frac{a}{8}} \) sin(y)8dy
= [-8cos(y) + c]a/80
= -8cos(a/8)
Lösung müsste jedoch lauten:
= -8sin(a/8)
Wo habe ich einen Fehler gemacht?