f(x)=\(\frac{1}{(4x-1)^2} \)
F(x)=\( \int\limits_{}^{} \)\(\frac{1}{(4x-1)^2} \)*dx
Lösung mit Substitution:
4x-1=u x=\( \frac{u+1}{4} \) dx=\( \frac{1}{4} \)*du
F(u)=\( \int\limits_{}^{} \)\( \frac{1}{u^2} \)*\( \frac{1}{4} \)*du=\( \frac{1}{4} \)*\( \int\limits_{}^{} \)\( u^{-2} \)*du=-\( \frac{1}{4} \)*\( u^{-1} \)=-\( \frac{1}{4u} \)
F(x)=-\( \frac{1}{4*(4x-1)} \)=\( \frac{1}{4*(1-4x)} \)=\( \frac{1}{4-16x} \)