Es gilt mit der Spaltenaddition (-xi mal i.-Spalte addiert auf 1. Spalte):
$$\begin{vmatrix} 0 & x_1 & x_2 & ... & x_n \\ x_1 & 1 & 0 & ... & 0 \\ x_2 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ x_n & 0 & ... & 0 & 1 \end{vmatrix} = \begin{vmatrix} -x_1^2 & x_1 & x_2 & ... & x_n \\ 0 & 1 & 0 & ... & 0 \\ x_2 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ x_n & 0 & ... & 0 & 1 \end{vmatrix} = \begin{vmatrix} -x_1^2-x_2^2 & x_1 & x_2 & ... & x_n \\ 0 & 1 & 0 & ... & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ x_n & 0 & ... & 0 & 1 \end{vmatrix} = ... = \begin{vmatrix} -x_1^2-x_2^2-...-x_n^2 & x_1 & x_2 & ... & x_n \\ 0 & 1 & 0 & ... & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & ... & 0 & 1 \end{vmatrix} \overset{Dreiecksmatrix}{=} -x_1^2-x_2^2-...-x_n^2$$