Aufgabe:
Auf einer Geraden g liegen die Punkte A, B, C und D. Ein weiterer Punkt P liegt nicht auf dieser Gerade. P' sei der Lotfußpunkt von P auf g. Zeige, dass AP+DP>BP+CP genau dann gilt, wenn AP'+DP'≥BP'+CP' gilt.
Problem/Ansatz:
Habt ihr vielleicht eine Idee, wie ein Beweis dafür aussehen könnte? Ich habe schon einiges versucht (Pythagoras, Dreiecksungleichung,...) bin aber bisher immer gescheitert. Wäre echt toll, wenn ihr mir helfen könnt!!!