Aloha :)
Das Volumen ist gleich dem Betrag der Deteminante:$$V=\operatorname{abs}\left(\left|\begin{array}{r}2 & 4 & 1\\6 & 1 & -2\\3 & -2 & 5\end{array}\right|\right)=|2(5-4)-6(20+2)+3(-8-1)|=157$$
Die 3 Seitenflächen des Spates erhalten wir aus den Beträgen der Vektorprodukte:
$$F_1=\left|\left(\begin{array}{r}2\\6\\3\end{array}\right)\times\left(\begin{array}{r}4\\1\\-2\end{array}\right)\right|=\left|\left(\begin{array}{c}-12-3\\12-(-4)\\2-24\end{array}\right)\right|=\left|\left(\begin{array}{c}-15\\16\\-22\end{array}\right)\right|=\sqrt{965}$$
$$F_2=\left|\left(\begin{array}{r}2\\6\\3\end{array}\right)\times\left(\begin{array}{r}1\\-2\\5\end{array}\right)\right|=\left|\left(\begin{array}{c}30-(-6)\\3-10\\-4-6\end{array}\right)\right|=\left|\left(\begin{array}{c}36\\-7\\10\end{array}\right)\right|=\sqrt{1445}$$
$$F_3=\left|\left(\begin{array}{r}4\\1\\-2\end{array}\right)\times\left(\begin{array}{r}1\\-2\\5\end{array}\right)\right|=\left|\left(\begin{array}{c}5-4\\-2-20\\-8-1\end{array}\right)\right|=\left|\left(\begin{array}{c}1\\-22\\-9\end{array}\right)\right|=\sqrt{566}$$
Da es jede Seite 2-mal gibt beträgt die gesamte Oberfläche:$$O=2(F_1+F_2+F_3)\approx2\cdot92,8684\approx185,74$$