a)
Normalenvektor bestimmen
[2, 3, 0] ⨯ [2, 0, -1] = [-3, 2, -6]
[2, 7, -6] + r·[2, 3, 0] + s·[-3, 2, -6] = [2, -3, 7] + t·[2, 0, -1] --> r = -2 ∧ s = -2 ∧ t = 1
Abstand
2·|[-3, 2, -6]| = 14
Parallele Gerade durch h parallel zu g
X = [2, -3, 7] + 1·[2, 0, -1] + r·[2, 3, 0]
X = [4, -3, 6] + r·[2, 3, 0]