$$e^{3+ i * π} * ( ( 4+2*i) * (-1-2*i))$$$$ * \sqrt[6]{17,0859375} * e ^{ln (1/e^3)}=$$
$$e^{ i * π} * ( ( 4+2*i) * (-1-2*i))$$$$ * (170859375/10000000) ^{1/6} =$$
$$(cos(π)+sin (π)i)* ( ( 4+2*i) $$$$* (-1-2*i))* ((3^7*5^7)/(2^7*5^7) ^{1/6} =$$
$$(-1)* ( ( 4+2*i) * (-1-2*i))$$$$ * (3^7/2^7) ^{1/6} =$$
$$( ( 4+2*i) * (1+2*i))$$$$ *(3^7/2^7) ^{1/6} =$$
$$10*i* (3^7/2^7) ^{1/6}=$$
$$10*i*3/2* (3/2)^{1/6}=$$
$$15*i* (3/2)^{1/6}≈16, 0487 i$$