Aloha :)
Rationale Zahlen \(a\in\mathbb Q\) kann man als Bruch darstellen. Das heißt, es gibt 2 ganze Zahlen \(p,q\in\mathbb Z\) mit \(q\ne0\), sodass \(a=\frac{p}{q}\). Wenn du solche Zahlen als Dezimalzahlen schreibst, enden sie entweder auf einer \(0\) oder auf einer Periode.
Irrationale Zahlen \(b\in\mathbb R\setminus\mathbb Q\) erweitern die rationalen Zahlen um solche, die sich nicht als Bruch darstellen lassen. Das sind so Leute wie die Kreiszahl \(\pi\) oder die Euler-Konstante \(e\). Wenn du solche Zahlen als Dezimalzahlen schreibst, enden diese nicht, es gibt keine periodischen Wiederholungen von Ziffernfolgen.
Die reelle Zahlen \(c\in\mathbb R\) enthalten alle rationalen und alle irrationalen Zahlen.
In diesem Zusammenhang kannst du dir merken, dass die Wurzel \(\sqrt n\) aus einer natürlichen Zahl \(n\in\mathbb N\) entweder wieder eine natürliche Zahl oder eine irrationale Zahl ist.$$\sqrt4=2\quad\text{ist eine natürliche Zahl}\quad;\quad\sqrt5\approx2,236\cdots\quad\text{ist eine irrationale Zahl}$$
Es gilt: \(\mathbb N\subset \mathbb Z\subset\mathbb Q\subset\mathbb R\)