Der Erwartungswert bzw. der Mittelwert ist linear. Das bedeutet, dass die folgenden beiden Rechenregeln gelten. Sei \(a\) eine konstante Zahl und \(A,B\) zwei Zufallsvariablen, dann gilt:$$(1)\quad\langle A+B\rangle=\langle A\rangle+\langle B\rangle$$$$(2)\quad\langle a\cdot A\rangle=a\cdot\langle A\rangle$$
Damit schreibe ich meine Herleitung von oben nochmal etwas detaillierter auf:
Per Definition ist:$$V(X)=\left<(X-\left<X\right>)^2\right>$$Darauf wende ich die 2-te binomische Formel an:$$=\langle \underbrace{X^2}_{=A}-\underbrace{2X\langle X\rangle}_{=B}+\underbrace{\langle X\rangle^2}_{=C}\rangle$$Nun wird Regel (1) auf alle 3 Summanden angewendet:$$=\langle\underbrace{X^2}_{=A}\rangle-\langle\underbrace{2X\left<X\right>}_{=B}\rangle+\langle\underbrace{\left<X\right>^2}_{=C}\rangle$$In der Mitte kommt jetzt Regel (2) zum Zug, denn \(2\cdot\langle X\rangle\) ist eine konstante Zahl, die wir vor die spitze Klammer ziehen können:$$=\left<X^2\right>-\underbrace{2\left<X\right>}_{=a}\left<X\right>+\left<X\right>^2$$Die beiden Mittelwerte werden zum Quadrat multipliziert:$$=\left<X^2\right>-2\left<X\right>^2+\left<X\right>^2$$$und mit dem letzten Quadrat verrechnet:$$=\left<X^2\right>-\left<X\right>^2$$