Hallo,
die Ebenengleichung in Normalenform ist gegeben durch:$$\vec{x}\cdot \vec{n}=\vec{p_0}\cdot \vec{n}$$ wobei:$$\vec{x}\cdot \vec{n}=\begin{pmatrix} x\\y\\z \end{pmatrix}\cdot \begin{pmatrix} 1\\0\\1 \end{pmatrix}=1\cdot x+0\cdot y+1\cdot z=x+z$$$$\vec{p_0}\cdot \vec{n}=\begin{pmatrix} 1\\3\\2 \end{pmatrix}\cdot \begin{pmatrix} 1\\0\\1 \end{pmatrix}=1+3\cdot 0+2\cdot 1=3$$ Also \(E\, : \, x+z=3\)