Leute, ich komme bei dieser Aufgabe irgendwie nicht weiter, kann mir jemand sagen, wie man das hier löst?
Das Doppelverhältnis \( \left[z_{1}, z_{2}, z_{3}, z_{4}\right] \) von vier verschiedenen Punkten \( z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty} \) ist definiert als
\( \left[z_{1}, z_{2}, z_{3}, z_{4}\right]:=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)} \text { für } z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C} \)
und für \( z_{j}=\infty \) als entsprechender Grenzwert, also z.B.
\( \left[\infty, z_{2}, z_{3}, z_{4}\right]:=\lim \limits_{z \rightarrow \infty}\left[z, z_{2}, z_{3}, z_{4}\right]=\frac{z_{2}-z_{4}}{z_{2}-z_{3}} \)
(a) Sei \( f: \mathrm{C}_{\infty} \rightarrow \mathrm{C}_{\infty} \) eine Möbius-Transformation. Beweisen Sie, dass
\( \left[z_{1}, z_{2}, z_{3}, z_{4}\right]=\left[f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right), f\left(z_{4}\right)\right] \)
für paarweise verschiedene \( z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty} \)
(b) Benutzen Sie Teil (a) um folgendes zu zeigen: Gegeben paarweise verschiedene Punkte \( z_{1}, z_{2}, z_{3} \in \mathbb{C}_{\infty} \) und \( w_{1}, w_{2}, w_{3} \in \mathbb{C}_{\infty}, \) so existiert genau eine Möbius-Transformation \( f: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty} \) mit \( f\left(z_{j}\right)=w_{j} \) für \( j=1,2,3 \). Für \( z \notin\left\{z_{1}, z_{2}, z_{3}\right\} \) ist \( f \) gegeben durch
\( \left[w_{1}, w_{2}, w_{3}, f(z)\right]=\left[z_{1}, z_{2}, z_{3}, z\right] \)
Ich würde mich freuen, wenn jemand die Zeit findet, mir zu helfen!