Bestimme ein endliches Erzeugendensystem für folgende Unterräume:
a)
$$U1=\left\{(x_1,x_2,x_3)\in\mathbb{R^3}|x_1-x_2+x_3=x_1+2x_2+3x_3=0\right\} $$
b)
$$U2=\left\{(x_1,x_2,x_3)\in\mathbb{R^3}|x_1-x_2+x_3=0\right\} $$
zu a)
Bestimme den Kern der Matrix
$$ \begin{pmatrix} 1 &-1&1\\ 1&2&3\end{pmatrix} $$
Dann müsste das Erzeugendensystem gegeben sein durch $$ <\begin{pmatrix} \frac{-5}{3} \\ \frac{-2}{3}\\ 1 \end{pmatrix}> $$.
zu b)
Das Erzeugendensystem müsste durch $$<\begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix},\begin{pmatrix} 1\\2\\1 \end{pmatrix}> $$ gegeben sein.