ich bin gerade dabei diese DG zu lösen:
$$y'=\frac{y(y^2+x^2)}{x^3}$$
Ich habe versucht die DG über das Ähnlichkeitsverfahren zu lösen, aber das leider nicht funktioniert, ich komme zumindest nicht auf die richtige Lösung: $$y=+-\frac{x}{\sqrt{c-ln(x^2)}}$$
Das war bisher der Ansatz, den ich verfolgt habe:
$$a=y^2+x^2$$
$$=>y=\sqrt{a-x^2}=>y'=\frac{a'-2x}{\sqrt{a-x^2}}$$
Könnt ihr mir vielleicht sagen, was ich falsch gemacht habe und wie es richtig lauten muss?
VG:)