Aloha ChickenWing ;)
Was hast du denn da für Leute zur Party eingeladen? Die sehen ja schlimm aus.
$$u_1(x,y,z)=\frac{\partial}{\partial z}\left(\frac{\frac{1}{y}}{z^{-3}}\cdot\frac{\partial}{\partial y}\left(y^2\cdot x^{\frac{1}{2}}\cdot\frac{\partial}{\partial x}\left(\sqrt{\log_2(256)\cdot5x}\right)\right)\right)$$
$$u_1(x,y,z)=\frac{\partial}{\partial z}\left(\frac{z^3}{y}\cdot\frac{\partial}{\partial y}\left(y^2\cdot \sqrt{x}\cdot\frac{\partial}{\partial x}\left(\sqrt{8\cdot5x}\right)\right)\right)$$
$$u_1(x,y,z)=\frac{\partial(z^3)}{\partial z}\left(\frac{\sqrt x}{y}\cdot\frac{\partial(y^2)}{\partial y}\cdot \frac{\partial}{\partial x}\left(\sqrt{40x}\right)\right)$$
$$u_1(x,y,z)=3z^2\,\frac{\sqrt x}{y}\,2y\,\frac{\sqrt{40}}{2\sqrt{x}}=3z^2\sqrt{40}=3z^2\cdot2\sqrt{10}=6\sqrt{10}\,z^2$$
So sieht \(u_1\) schon besser aus. Bauen wir noch \(u_2\) um:
$$u_2(x,y,z)=6\cdot\sqrt{\frac{\ln(256)}{\ln(2)}+2}\cdot z^2=6\sqrt{8+2}\cdot z^2=6\sqrt{10}\,z^2$$
Offentischlich gilt \(u_1(x,y,z)=u_2(x,y,z)\).