a) Sei \(v=\begin{pmatrix}v_1\\v_2\end{pmatrix}\). Dann ist
\(\begin{aligned} & \left\Vert v\right\Vert _{\infty}\\ =\, & \max\left(\left|v_{1}\right|,\left|v_{2}\right|\right)\\ \leq\, & \left|v_{1}\right|+\left|v_{2}\right|=\left\Vert v\right\Vert _{1}\\ \leq\, & \max\left(\left|v_{1}\right|,\left|v_{2}\right|\right)+\max\left(\left|v_{1}\right|,\left|v_{2}\right|\right)\\ =\, & 2\cdot\max\left(\left|v_{1}\right|,\left|v_{2}\right|\right)=2\cdot\left\Vert v\right\Vert _{\infty} \end{aligned}\).
b) Wie a)