Aloha )
$$1)\quad z=\frac{8\sqrt2\,i}{1-i}=\frac{8\sqrt2\,i(1+i)}{(1-i)(1+i)}=\frac{8\sqrt2\,(i+i^2)}{1^2-i^2}=\frac{8\sqrt2\,(i-1)}{1-(-1)}=-4\sqrt2+4\sqrt2\,i$$
$$2)\quad z=\sqrt{(-4\sqrt2)^2+(4\sqrt2)^2}\,e^{i\,\arctan\left(\frac{4\sqrt2}{-4\sqrt2}\right)+i\pi}=\sqrt{64}\,e^{-i\frac{\pi}{4}+i\pi}=8\,e^{i\,\frac{3}{4}\pi}$$Der Zusatzterm \(+i\pi\) im Exponenten ist ein Korrekturterm, weil der Realteil negativ ist, damit der Winkel im richitgen Quadranten landet.
$$3)\quad \sqrt[3]{z}=\left(8\,e^{i\frac{3}{4}\pi+i2\pi n}\right)^{\frac{1}{3}}=2\,e^{i\frac{\pi}{4}\pi+i\frac{2\pi}{3}n}\quad;\quad n\in\mathbb Z$$Der Zusatzterm \(i2\pi n\) kommt daher, dass die Winkelfunktionen \(2\pi\) periodisch sind und daher die Polardarstellung aus 2) nicht eindeuitig ist. Wir können zum Winkel beliebig oft \(2\pi\) addieren oder subtrahieren ohne den Wert der \(e\)-Funktion zu ändern. Für \(n=-1\), \(n=0\) und \(n=1\) erhalten wir unterschiedliche Winkel, für alle anderen Werde von \(n\) kann man das Argument auf eines der drei genannten zurückführen, daher ist:$$\sqrt[3]{z}=\left\{\begin{array}{c}2\,e^{i\,\frac{5}{12}\pi}\\2\,e^{i\,\frac{1}{4}\pi}\\2\,e^{i\,\frac{11}{12}\pi}\end{array}\right.$$
$$4)\quad 2e^{i\,\frac{1}{4}\pi}=2\left(\cos\frac{\pi}{4}+i\,\sin\frac{\pi}{4}\right)=2\sqrt2+i\,2\sqrt2$$