Aloha ;)
Willkommen in der Mathelounge...
Die Umformung ist super aufgepustet. Du kannst das eigentlich sofort hinschreiben. Man dividiert durch einen Bruch, indem man mit dem Kehrwert multipliziert:
$$\frac{1}{\frac{x}{\sqrt{1+x^2}}}=1\cdot\frac{\sqrt{1+x^2}}{x}=\frac{\sqrt{1+x^2}}{x}$$
Jetzt erkennst du auch, dass die Umformung nicht ganz korrekt ist, bei dir steht im Nenner ein \(X^2\).
Zu den Umformungen in dienem Posting...
$$\frac{1}{\frac{x}{\sqrt{1+x^2}}}=\frac{1}{\frac{\sqrt{x^2}}{\sqrt{1+x^2}}}=\frac{1}{\sqrt{\frac{x^2}{1+x^2}}}$$Das \(x\) wurde zu \(\sqrt{x^2}\) umgeformt. Das ist die Stelle, an der wir \(x>0\) fordern müssen. Danach wurde \(\frac{\sqrt a}{\sqrt b}=\sqrt{\frac{a}{b}}\) verwendet, um den Bruch unter eine große Wurzel zu schreiben. Weiter gehts:
$$\frac{1}{\sqrt{\frac{x^2}{1+x^2}}}=\frac{\sqrt{1^2}}{\sqrt{\frac{x^2}{1+x^2}}}=\frac{\sqrt{1}}{\sqrt{\frac{x^2}{1+x^2}}}=\sqrt{\frac{1}{\frac{x^2}{1+x^2}}}=\sqrt{1\cdot\frac{1+x^2}{x^2}}=\sqrt{\frac{1+x^2}{x^2}}\ne\frac{\sqrt{1+x^2}}{x^2}$$
Wieder wurde die Wurzel über den gesamten Quotienten geschrieben. Unter der Wurzel wurde dann durch den Bruch \(\frac{x^2}{1+x^2}\) dividiert, indem mit dem Kehrwert multipliziert wurde. Bis auf einen kleinen Bug am Ende, stimmen deine Umformungen.