Aufgabe:
Ein Geschäft bietet zwei Sorten von Glühbirnen an. Die Lebensdauer einer Glühbirne lasse sich jeweils durch eine exponentialverteilte Zufallsvariable mit einem Erwartungswert von 8000 bzw. 14000 Stunden je nach Sorte angemessen beschreiben. Ein Kunde kauft von jeder Sorte genau eine Glühbrine B1 bzw. B2 und vermutet, dass bei gleichzeitiger Benutzung beider Glühbirnen zuerst B1 dann B2 ausfällt.
Unter der Annahme, dass die zwei Glühbirnen unabhängig voneinander ausfallen, berechne man die Wahrscheinlichkeit dafür, dass die Glühbirnen nicht in der vermuteten Reihenfolge ausfallen.
Ansatz:
B1/B2 | zuerst kaputt | zuletzt kaputt |
|
zuerst kaputt
| p = 0 | p = ? | 0+? |
zuletzt kaputt | p = ??? | p = 0 | ???+0 |
| 0+??? | ?+0 |
|
Ich weiß nicht wie ich ? bzw. ??? ausrechnen könnte. Ich weiß aber dass hier die unteren beiden Felder 0+??? und ?+0 zusammen 14.000 ergeben müssen. Also auch dass (0+?)+(???+0) = 8.000 gelten muss.
:)
!