f(x) = 0,25x^4-3x^3+9x^2
f´(x) =x^3-9x^2+18x
f´´(x)=3x^2-18x+18
x^3-9x^2+18x=0
x*(x^2-9x+18)=0
x₁=0 → f(0) =0
x^2-9x+18=0
x^2-9x=-18
(x-\( \frac{9}{2} \))^2=-18+4,5^2=2,25|\( \sqrt{} \)
x₂=\( \frac{9}{2} \)+1,5=6 →f(6) = 0,25*6^4-3*6^3+9*6^2 =0
x₃=\( \frac{9}{2} \)-1,5=3 →f(3) = 0,25*3^4-3*3^3+9*3^2 =20,25
Art der Extremwerte:
f´´(0)=18>0 → Minimum
f´´(3)=3*3^2-18*3+18 = -9 <0 → Maximum
f´´(6)=3*6^2-18*6+18 = 18 > 0 → Minimum
Text erkannt:
1