0 Daumen
357 Aufrufe

Hallo ich komme mit einer Aufgabe einfach nicht weiter. Würde mich über Hilfe sehr freuen. 

 

Zeigen Sie, dass für f(x)= sin(2arcsin(x)) die Beziehung 

(1-x2) *f"(x)-x *f`(x)+4* f(x)=0

für alle x∈(-1,1) gilt.

Avatar von

1 Antwort

0 Daumen
$$\Large\cal{}$$$$f(x)=\sin(2\arcsin x)\Rightarrow\arcsin f(x)=2\arcsin x$$$$\Rightarrow\frac{f'(x)}{\sqrt{1-f^2(x)}}=2\frac1{\sqrt{1-x^2}}\Rightarrow \sqrt{1-x^2}f'(x)=2\sqrt{1-f^2(x)}$$$$\Rightarrow (1-x^2)\left(f'(x)\right)^2=4\left(1-f^2(x)\right)$$$$\Rightarrow -2x\left(f'(x)\right)^2+2(1-x^2)f'(x)f''(x)=-8f(x)f'(x)$$$$\Rightarrow xf'(x)-(1-x^2)f''(x)=4f(x).$$
Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community