fa(x) = ax^3 + a²x^2 - 2a^4 mit a ≠ 0.
f ' a(x) = 0  <=>   x = 0 oder x=-2a/3
f ' ' a(0) = 2a^2 > 0  und  f ' ' a(-2a/3) = - 2a^2 < 0
also Hochpunkte   Ha (  -2a/3  ;  -50a^4/27 ) .
==>   x = -2a/3     und    y = -50a^4/27
==>   a = -3x/2    und y =  -50( -3x/2)^4/27 = -75x^2 / 8
==>  Ortskurve  y = -75x^2 / 8