Aloha :)
Wir untersuchen, wie sich die Funktion verhält, wenn wir das Vorzeichen von \(x\) wechseln, also auf die andere Seite der \(y\)-Achse springen.
1. Fall \(t\) ist gerade:
Wenn \(t\) gerade ist, sind alle Exponenten \((t+2)\) und \(t\) gerade, sodass$$f(-x)=3(-x)^{t+2}+2(-x)^t=3x^{t+2}+2x^t=f(x)$$Die Funktion ist symmetrisch zur \(y\)-Achse.
2. Fall \(t\) ist ungerade:
Wenn \(t\) ungerade ist, sind alle Exponenten \((t+2)\) und \(t\) ungerade, sodass$$f(-x)=3(-x)^{t+2}+2(-x)^t=-3x^{t+2}-2x^t=-f(x)$$Die Funktion ist punktsymmetrisch zum Ursprung.