0 Daumen
1,6k Aufrufe

Aufgabe:

In einem üblichen Spielkartenpaket von 20 Karten befinden sich 4 Könige. Mam zieht zufällig nacheinander eine Karte. Zeige, dass die Wahrscheinlichkeit, dabei einen König zu ziehen, beim ersten Zug gleich ist wie beim zweiten Zug.


Themenbereich: Stochastik: Abhängige, Unabhängige Ereignisse

Avatar von

Bei einem gut gemischten Kartenspiel ist doch offensichtlich die Wahrscheinlichkeit, dass ein König oben liegt genauso groß wie die Wahrscheinlichkeit, dass ein König an zweiter Stelle liegt wie die Wahrscheinlichkeit, dass ein König an 14. Stelle liegt wie ...

Wenn der Ziehungsmodus nicht geklärt ist, ist die Aufgabe nicht eindeutig lösbar.

Diese Aufgabe lässt einige Fragen offen.

3 Antworten

0 Daumen
 
Beste Antwort

Ein König soll gezogen werden, also nicht kein König
oder 2 Könige

1.Möglcihkeit
König / kein König
4/20 * 16/19

2.Möglichkeit
kein König / König
16/20 * 4/19

So ist das sicher gemeint.

Avatar von 123 k 🚀
So ist das sicher gemeint.

So ist das auf gar keinen Fall gemeint.

0 Daumen

P(1.Zug) = 4/20 = 1/5

P(2.Zug) = 16/20*4/19 = 16/95

Die Behauptung ist falsch.

Avatar von 81 k 🚀

Diese Antwort ist auch falsch.

Begründung? Es wird nacheinander gezogen. Ich gehen von einem bzw. zwei Zügen aus.

Es steht doch ausdrücklich in der Aufgabenstellung, die Wahrscheinlichkeit, EINEN König zu ziehen - entweder als erstes oder als zweites. Also scheidet die Wahrscheinlichkeit mit ZWEI Königen aus!

einer = genau einer oder mindestens einer ??

Da gibt es öfter Probleme. In der Logik bedeutet einer = mindestens einer (Existenzquantor).

0 Daumen

Für einen König beim ersten Zug ist die Wahrscheinlichkeit 4/20=1/5.

Nun zum zweiten Zug;

Wenn beim ersten Zug ein König gezogen wurde, sind noch 3 Könige von insgesamt 19 Karten vorhanden. Für den Pfad gilt:

4/20*3/19.

Wenn beim ersten Zug kein König gezogen wurde, sind noch 4 Könige von 19 da.

16/20*4/19.

Nun noch beide addieren:

4/20*3/19  +  16/20*4/19

=(12+64)/(20*19)

=76/380

=1/5

:-)

Avatar von 47 k

Ich dachte, gemeint sei der erste König beim 2. Zug.

Na ja. man kann es aber auch anders sehen. :)

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community