Aloha :)
Oha, lass uns erstmal alle Informationen aus der Aufgabenstellung sortieren...
Wir haben 2 Basen des \(\mathbb R^2\):$$B1=\left(\,\binom{1}{1};\binom{1}{-1}\,\right)\quad;\quad B2=\left(\,\binom{3}{2};\binom{1}{0}\,\right)$$und 2 Basen des \(\mathbb R^3\):
$$C1=\left(\,\begin{pmatrix}2\\0\\0\end{pmatrix};\begin{pmatrix}1\\2\\0\end{pmatrix};\begin{pmatrix}1\\1\\2\end{pmatrix}\,\right)\quad;\quad C2=\left(\,\begin{pmatrix}-2\\-2\\-2\end{pmatrix};\begin{pmatrix}-3\\2\\-2\end{pmatrix};\begin{pmatrix}-1\\4\\2\end{pmatrix}\,\right)$$
Weiter haben wir eine Abbildung \(L:\,\mathbb R^2\to\mathbb R^3\), die einen Vektor zur Basis \(B1\) auf einen Vektor zur Basis \(C2\) abbildet:$${_{C2}}\mathbf L_{B1}\cdot\binom{\lambda_1}{\lambda_2}=\begin{pmatrix}\lambda_1\!-\!\lambda_2\\\lambda_2\!-\!\lambda_1\\\lambda_1\end{pmatrix}=\lambda_1\begin{pmatrix}1\\-1\\1\end{pmatrix}+\lambda_2\begin{pmatrix}-1\\1\\0\end{pmatrix}=\left(\begin{array}{rr}1 & -1\\-1 & 1\\1 & 0\end{array}\right)\binom{\lambda_1}{\lambda_2}$$woraus wir die Abbildungsmatrix konkret ablesen können:$${_{C2}}\mathbf L_{B1}=\left(\begin{array}{rr}1 & -1\\-1 & 1\\1 & 0\end{array}\right)$$
zu a) Gesucht ist die Abbildungs-Matrix \(\mathbf A\), die rechts einen Eingangs-Vektor zur Basis \(B1\) erwartet und links einen Ausgangs-Vektor zur Basis \(C1\) liefert. Die uns bekannte Abbildungs-Matrix \({_{C2}}\mathbf L_{B1}\) erwartet rechts einen Eingangsvektor zur Basis \(B1\), das passt also schon mal. Sie liefert aber links einen Ausgangs-Vektor zur Basis \(C2\). Das passt nicht, wir müssen diesen Ausgangsvektor in die Basis \(C1\) überführen.$$\mathbf A={_{C1}}\mathbf L_{B1}={_{C1}}\mathbf {id}_{C2}\cdot{_{C2}}\mathbf L_{B1}$$
Zur Bestimmung der Basiswechselmatrix \({_{C1}}\mathbf {id}_{C2}\) von der Basis \(C2\) zur Basis \(C1\) nutzen wir aus, dass uns die Basisvektoren beider Basen bezüglich der kanonischen Standardbasis \(K\) bekannt sind:$${_K}\mathbf {id}_{C1}=\left(\begin{array}{rrr}2 & 1 & 1\\0 & 2 & 1\\0 & 0 & 2\end{array}\right)\quad;\quad {_K}\mathbf {id}_{C2}=\left(\begin{array}{rrr}-2 & -3 & -1\\-2 & 2 & 4\\-2 & -2 & 2\end{array}\right)$$
Damit haben wir alles zusammen, um \(\mathbf A\) bestimmen zu können:$$\mathbf A={_{C1}}\mathbf {id}_{C2}\cdot{_{C2}}\mathbf L_{B1}={_{C1}}\mathbf{id}_K\cdot{_K}\mathbf{id}_{C2}\cdot{_{C2}}\mathbf L_{B1}=\left({_K}\mathbf{id}_{C1}\right)^{-1}\cdot{_K}\mathbf{id}_{C2}\cdot{_{C2}}\mathbf L_{B1}$$$$\phantom{\mathbf A}=\left(\begin{array}{rr}2 & 1 & 1\\0 & 2 & 1\\0 & 0 & 2\end{array}\right)^{-1}\left(\begin{array}{rr}-2 & -3 & -1\\-2 & 2 & 4\\-2 & -2 & 2\end{array}\right)\left(\begin{array}{rr}1 & -1\\-1 & 1\\1 & 0\end{array}\right)=\left(\begin{array}{rr}-0,25 & -1,5\\-0,5 & 2\\1 & 0\end{array}\right)$$
zu b) Hier sollen zwei Basiswechsel-Matrizen bestimmt werden:$$\mathbf S={_{B2}}\mathbf{id}_{B1}={_{B2}}\mathbf{id}_{K}\cdot {_{K}}\mathbf{id}_{B1}=\left({_K}\mathbf{id}_{B2}\right)^{-1}\cdot {_K}\mathbf{id}_{B1}$$$$\phantom{\mathbf S}=\left(\begin{array}{rr}3 & 1\\2 & 0\end{array}\right)^{-1}\left(\begin{array}{rr}1 & 1\\1 & -1\end{array}\right)=\left(\begin{array}{rr}0,5 &-0,5 \\ -0,5 & 2,5 \end{array}\right)$$$$\mathbf R={_{C2}}\mathbf{id}_{C1}={_{C2}}\mathbf{id}_{K}\cdot {_K}\mathbf{id}_{C1}=\left({_K}\mathbf{id}_{C2}\right)^{-1}\cdot {_K}\mathbf{id}_{C1}$$$$\phantom{\mathbf R}=\left(\begin{array}{rrr}-2 & -3 & -1\\-2 & 2 & 4\\-2 & -2 & 2\end{array}\right)^{-1}\left(\begin{array}{rrr}2 & 1 & 1\\0 & 2 & 1\\0 & 0 & 2\end{array}\right)=\left(\begin{array}{rrr}-1,2 & -1,4 & 0\\0,4 & 0,8 & -0,5\\-0,8 & -0,6 & 0,5\end{array}\right)$$
zu c) Gesucht ist die Abbildungsmatrix \(\tilde\mathbf A\), die rechts Einangs-Vektoren zur Basis \(B2\) erwartet und links Ausgangs-Vektoren zur Basis \(C2\) liefert:$$\tilde\mathbf A={_{C2}}\mathbf L_{B2}={_{C2}}\mathbf L_{B1}\cdot{_{B1}}\mathbf{id}_{B2}={_{C2}}\mathbf L_{B1}\cdot\left({_{B2}}\mathbf{id}_{B1}\right)^{-1}$$$$\phantom{\tilde\mathbf A}=\left(\begin{array}{rr}1 & -1\\-1 & 1\\1 & 0\end{array}\right)\left(\begin{array}{rr}0,5 &-0,5 \\ -0,5 & 2,5 \end{array}\right)^{-1}=\left(\begin{array}{rr}2 & 0\\-2 & 0\\2,5 & 0,5\end{array}\right)$$