Aufgabe:
Sei \( \mathcal{A} \) eine Algebra auf \( \Omega \) und \( A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{A} . \) Beweisen Sie unter Verwendung mithilfe der morganschen Gesetzen
\(\bigcap_{i=1}^{n} A_{i} \in \mathcal{A}\)
Morgansche Gesetze:
\( \left(A_{1} \cup A_{2}\right)^{c}=A_{1}^{c} \cap A_{2}^{c} \)
\( \left(A_{1} \cap A_{2}\right)^{c}=A_{1}^{c} \cup A_{2}^{c} \)
Problem/Ansatz:
Ich weiß wirklich echt nicht weiter...