0 Daumen
601 Aufrufe

Aufgabe:

Gegeben sind die Funktionen f(x)= (x^2-1)^2

g(x) )=-(x^2-1)*(x+1)


a) Untersuchen Sie die Graphen auf Symmetrie und identifizieren Sie welcher Graph zur Funktion f bzw. g gehört.

b) An den Graphen von g wird im Schnittpunkt P mit der y- Achse die Tangente gelegt. Wie lautet die Tangentengleichung? P(0/1)

c) Gibt es einen weiteren Punkt auf dem Graphen von g mit der gleichen Steigung wie im Punkt P?

d)An welchen Stellen hat der Graph von g die Steigung -20

e)Gibt es Stellen, an denen die Funktionen f und g die gleiche Steigung haben? Wie viele solche Stellen gibt es ?



Problem/Ansatz:

Ich habe die Aufgabe mehrmals versucht zu lösen, doch ich komme überhaupt nicht weiter. Es wäre sehr lieb, wenn mir jemand da helfen könnte.

Avatar von
"Ich habe die Aufgabe mehrmals versucht zu lösen, doch ich komme überhaupt nicht weiter. Es wäre sehr lieb, wenn mir jemand da helfen könnte."

Bitte als Kommentar einen deiner Versuche eingeben.

Welches Thema behandelt ihr gerade neu ?

Bei so gemischten Aufgaben, solltest du zumindest Ansätze hinbekommen. Zeichnungen z.B.

3 Antworten

+1 Daumen

An den Graphen von g wird im Schnittpunkt P mit der y- Achse die Tangente gelegt. Wie lautet die Tangentengleichung? P(0/1)

g(x) )=-(x^2-1)*(x+1)=-x^3 - x^2 + x + 1

g ' (x) = -3x^2 - 2x + 1  ==>   g ' ( 0) = 1

Also geht die Tangente durch (0;1) und hat die Steigung 1,

also Gleichung y = x+1. Etwa so: ~plot~ -(x^2-1)*(x+1); x+1 ~plot~

Avatar von 289 k 🚀
0 Daumen

t(x) = (x-0)*g'(0) + 1 = ...

Avatar von 81 k 🚀
0 Daumen

Hallo,

Der Graph einer Funktion ist achsensymmetrisch bzgl. der y-Achse, wenn gilt f(-x) = f(x) oder wenn die x-Terme nur in geraden Potenzen im Funktionsterm vorkommen.

Der Graph einer Funktion ist punktsymmetrisch bzgl. des Urgsprungs, wenn gilt f(-x) = - f(x) oder wenn die x-Terme nur in ungeraden Potenzen im Funktionsterm vorkommen und f(x) kein konstantes Glied enthält.

Zu f gehört der grüne Graph und zu g der rote.

blob.png


b) An den Graphen von g wird im Schnittpunkt P mit der y- Achse die Tangente gelegt. Wie lautet die Tangentengleichung? P(0/1)

Die Tangentengleichung kannst du aufstellen mit

\(y=f'(x)\cdot(x-x_0)+f(x_0)\)

Oder du bestimmst mit Hilfe der Ableitung die Steigung m in dem Punkt und setzt nachher seine Koordinaten in die Gleichung y = mx + b ein, um b zu bestimmen.

Kommst du hiermit weiter?

Gruß, Silvia

Avatar von 40 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community