n2 = [2, 3, -1] ⨯ [3, 0, 2] = [6, -7, -9]
Damit liegen die Ebenen nicht parallel und schneiden sich in einer Geraden.
[3, -2, 7] + r·[2, 3, -1] + s·[3, 0, 2] = [2·r + 3·s + 3, 3·r - 2, -r + 2·s + 7]
3·(2·r + 3·s + 3) - 2·(3·r - 2) + (-r + 2·s + 7) = 4 --> r = 11·s + 16
Schnittgerade
gs: x = [3, -2, 7] + (11·s + 16)·[2, 3, -1] + s·[3, 0, 2] = [35, 46, -9] + s·[25, 33, - 9]