0 Daumen
2,4k Aufrufe

Die Höhe h ( in m) eines Balles, der fortgeschleudert wird, lässt sich mit der horizontalen Wurfweite s ( in m) mit

h(s) = - 1/90 s2 + s + 1,5    berechnen.

a)   Wie weit und wie hoch fliegt der Ball?

b)   Gib eine Funktionsgleichung an, wenn der Ball höher und weiter geworfen wird.

Avatar von

1 Antwort

0 Daumen

h(s) = - 1/90 s+ s + 1,5    berechnen.

a)   Wie weit und wie hoch fliegt der Ball?

h(s) = 0
- 1/90·s^2 + s + 1.5 = 0
s = 91.47580015 [∨ s = -1.475800154]

Sx = - (1)/(2·(- 1/90)) = 45 m
Sy = h(45) = 24 m

b)   Gib eine Funktionsgleichung an, wenn der Ball höher und weiter geworfen wird.

Du bräuchtest nur die Scheitelpunktform einer Parabel aufstellen, die einen etwas höheren Scheitelpunkt hat.

h2(s) = a*(x - 45)^2 + 24 + 2 = a·x^2 - 90·a·x + (2025·a + 26)

Wenn der Abwurfpunkt wieder in 1.5 m höhe ist ist

(2025·a + 26) = 1.5
a = - 49/4050

h2(s) = a*(x - 45)^2 + 24 + 2 = - 49/4050 * (x - 45)^2 + 26

Fertig

Avatar von 489 k 🚀

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community