Hallo :-)
Reicht es dafür, wenn ich dafür folgenden Beweis formuliere oder ist der schon falsch?
Nein, du hast ja erstmal Verknüpfungen eingeführt (die habe ich etwas verschönert hingeschrieben). Ein Vektorraum \(V\) über ein Körper \(\mathbb{K}\) (kurz \(\mathbb{K}\)-Vektorraum) hat per Definition immer zwei Verknüpfungen \(+\) und \(\cdot \).
\(+\) wird dabei gerne als Addition benannt und \(\cdot \) als skalare Multiplikation. Aber Vorsicht, das muss nicht immer zwangsläufig die Addition oder Multiplikation sein, die du schon aus der Schule kennst. Es sind erstmal nur Begriffe, die im jeweiligen Kontext immer genau definiert werden, also wie die Verknüpfungen auszuführen sind.
Jetzt hast du aber erstmal nur die Verknüpfungen eingeführt. Jetzt musst du mit diesen Verknüpfungen alle Vektorraumaxiome nachrechnen. Die stehen alle in eurer Definition zum Vektorraum.