a) \(\vec{OC} = \vec{OA} + 2\vec{AM_1}\)
\(\vec{OD} = \vec{OB} + 2\vec{BM_1}\)
b) \(\cos\angle ABC = \frac{\vec{BA}\cdot\vec{BC}}{\left|\vec{BA}\right|\cdot\left|\vec{BC}\right|}\)
c) \(\text{Fläche} = \left|\vec{AB}\times\vec{AD}\right|\)
d) \(E_1: \vec{x} = \vec{OA}+r\cdot{AB}+s\cdot\vec{AM_1}\)
e) \(\sin\angle BAM_1 = \frac{\text{Abstand}}{\left|\vec{AM_1}\right|}\)
f) \(E_1: \vec{x} = \vec{OP}+r\cdot{PQ}+s\cdot\vec{AB}\times\vec{AM_1}\)
g) \(\vec{OM_2} = \begin{pmatrix}x\\0\\0\end{pmatrix}\) und \(\left|AM_2\vec{}\right|= \left|\vec{BM_2}\right|\)