Vom Duplikat:
Titel: Wahrscheinlichkeit das Antikörpertest Positiv?
Stichworte: wahrscheinlichkeit,stochastik,wahrscheinlichkeitsrechnung,bedingte-wahrscheinlichkeit,baumdiagramm
Aufgabe:
Der Antikörpertest von Roche zeigt mit 82%-Wahrscheinlichkeit das richtige Ergebnis (positiv) an, wenn sich eine Person testen lässt, die Corona wirklich hat. Bestimmen Sie die Wahrscheinlichkeit, wie hoch die Wahrscheinlichkeit ist, dass eine Person mit einen positiven Testergebnis tatsächlich Corona hat. [Deutschland]
Meine Berechnung:
Text erkannt:
- Gegeben: \( P \) (Test \( + \) linfirient \( )=0,82 \) \( \Rightarrow \) Das Testergebnis ist mit einer Wahrsteinlichheit von \( 82 \% \) posihu bei einer Persoun die inficiert ist.
Gesucht: \( P( \) infiziert \( \mid \) Test \( +) \) \( \Rightarrow \) Die person ist infizent bei einem positiven Testergebnis.
\( P( \) infizient \( )=\frac{\text { infizierte }}{\text { Bevillerang }}=\frac{3,68 \text { Mio. }}{83 \text { Mio. }}=0,044=4,4 \% \) \( P(T e s t+)=\frac{\text { Test }+}{\text { Tests }}=\frac{4,1 \text { Mio. }}{60,4 \pi_{10} \text { . }}=0,068=6,8 \% \)
Laut Sah des Bayes
\( =\frac{0,044}{0,068} \cdot 0,82=0,053=5,3 \% \)
Problem:
Hab für die Wahrscheinlichkeit das jemand infiziert ist 4,4% und das ein Test Positiv ist 6,8%. Wenn ich dies aber in die Gleichung packe kommt 5,3 % raus. Meiner Meinung nicht realistisch das die Chance das man bei einem Positiven Ergebnis Corona hat nur 5,3% ist.