Aloha :)
Ein Faktor springt über den Bruchstrich, indem sein Exponent das Vorzeichen ändert:$$\phantom{=}\left[\left(\frac{a^{-2}+b^{-2}}{a^2b^2}\right)^{-1}-\left(\frac{b^4+a^4}{2a^4b^6}\right)^{-1}+\left(\frac{a^{-2}-b^{-2}}{a^2b^2}\right)^{-1}\right]^2$$$$=\left[\left(\frac{\frac{1}{a^2}+\frac{1}{b^2}}{a^2b^2}\right)^{-1}-\left(\frac{b^4+a^4}{2a^4b^6}\right)^{-1}+\left(\frac{\frac{1}{a^2}-\frac{1}{b^2}}{a^2b^2}\right)^{-1}\right]^2$$
Wir erweitern den ersten und den letzten Bruch mit \(a^2b^2\):$$=\left[\left(\frac{a^2b^2\left(\frac{1}{a^2}+\frac{1}{b^2}\right)}{a^2b^2\cdot a^2b^2}\right)^{-1}-\left(\frac{b^4+a^4}{2a^4b^6}\right)^{-1}+\left(\frac{a^2b^2\left(\frac{1}{a^2}-\frac{1}{b^2}\right)}{a^2b^2\cdot a^2b^2}\right)^{-1}\right]^2$$$$=\left[\left(\frac{b^2+a^2}{a^4b^4}\right)^{-1}-\left(\frac{b^4+a^4}{2a^4b^6}\right)^{-1}+\left(\frac{b^2-a^2}{a^4b^4}\right)^{-1}\right]^2$$
Wir nehmen die Kehrwerte, um die negativen Exponenten loszuwerden:$$=\left[\frac{a^4b^4}{b^2+a^2}-\frac{2a^4b^6}{b^4+a^4}+\frac{a^4b^4}{b^2-a^2}\right]^2$$
Wir erweitern den ersten und den letzten Bruch so, dass wir im Nenner die dritte binomische Formel anwenden können:$$=\left[\frac{(b^2-a^2)a^4b^4}{(b^2-a^2)(b^2+a^2)}-\frac{2a^4b^6}{b^4+a^4}+\frac{(b^2+a^2)a^4b^4}{(b^2+a^2)(b^2-a^2)}\right]^2$$$$=\left[\frac{a^4b^6-a^6b^4}{b^4-a^4}-\frac{2a^4b^6}{b^4+a^4}+\frac{a^4b^6+a^6b^4}{b^4-a^4}\right]^2$$$$=\left[\frac{(a^4b^6-a^6b^4)+(a^4b^6+a^6b^4)}{b^4-a^4}-\frac{2a^4b^6}{b^4+a^4}\right]^2=\left[\frac{2a^4b^6}{b^4-a^4}-\frac{2a^4b^6}{b^4+a^4}\right]^2$$
Wir erweitern nochmal beide Brüche so, dass wir im Nenner wieder die dritte binomische Formel anwenden können:$$=\left[\frac{(b^4+a^4)2a^4b^6}{(b^4+a^4)(b^4-a^4)}-\frac{(b^4-a^4)2a^4b^6}{(b^4-a^4)(b^4+a^4)}\right]^2$$$$=\left[\frac{2a^4b^{10}+2a^8b^6}{b^8-a^8}-\frac{2a^4b^{10}-2a^8b^6}{b^8-a^8}\right]^2=\left[\frac{(2a^4b^{10}+2a^8b^6)-(2a^4b^{10}-2a^8b^6)}{b^8-a^8}\right]^2$$$$=\left[\frac{4a^8b^6}{b^8-a^8}\right]^2=\frac{16a^{16}b^{12}}{(b^8-a^8)^2}$$