Aloha :)
Du musst, wie immer, die Ableitung gleich \(0\) setzen$$\operatorname{Si}'(x)=\frac{d}{dx}\left(\int\limits_0^x\frac{\sin t}{t}\,dt\right)=\frac{\sin x}{x}\stackrel!=0$$Die Nullstellen der Ableitung sind offensichtlich die Nullstellen derSinusfunktion:$$x_n=n\cdot\pi\quad;\quad n\in\mathbb N$$Beachte, dass die Funktion \(Si(x)\) mit Definitionsbereich \(\mathbb R^{\ge0}\) bei \(x=0\) nicht differenzierbar ist. Es gilt aber \(Si(0)=0\), sodass für \(x=0\) ein Randextremum vorliegt. Daher haben wir Extremwerte-Kandidaten für:$$x_n=n\cdot\pi\quad;\quad n\in\mathbb N_0$$
Du kannst jetzt noch die zweite Ableitung heranzieren$$\operatorname{Si''(x)}=\frac{\cos x}{x}-\frac{\sin(x)}{x^2}\implies\operatorname{Si''(n\pi)}=\frac{\cos(n\pi)}{n\pi}=\frac{(-1)^n}{n\pi}\ne0$$um zu begründen, dass alle Kandidaten \(x_n\) mit \(n\ge1\) tatsächlich Extrema sind.