Hallo,
zu d)
\(2^{n-1}=\frac{2^n}{2}\)
\(\frac{2^4}{\frac{2^n}{2}}=\frac{2^4\cdot 2}{2^n}=\frac{2^5}{2^n}=2^{5-n}\)
\( n^{2}-3 n=n^{2}\left(1-\frac{3}{n}\right) \)
\( \frac{n^{2}+4 n-1}{n^{2}\left(1-\frac{3}{n}\right)}= \)
\( \frac{n^{2}}{n^{2}\left(1-\frac{3}{n}\right)}+\frac{4 n}{n^{2}\left(1-\frac{3}{n}\right)}-\frac{1}{n^{2}\left(1-\frac{3}{n}\right)}= \)
\( \frac{1}{1-\frac{3}{n}}+\frac{\frac{4}{n}}{1-\frac{3}{n}}-\frac{\frac{1}{n^{2}}}{1-\frac{3}{n}}= \)
\( \frac{1+\frac{4}{n}-\frac{1}{n^{2}}}{1-\frac{3}{n}} \)
Gruß, Silvia