x/(x^2 - 1) - 1/(x - 1)
= x/(x^2 - 1) - (x + 1)/(x^2 - 1)
= (x - (x + 1)) / (x^2 - 1)
= - 1/(x^2 - 1)
2.
2/(1 - x^2) + 1/(x + x^2) - 1/(x - x^2)
= 2/((1 + x)·(1 - x)) + 1/(x·(1 + x)) - 1/(x·(1 - x))
= 2·x/(x·(1 + x)·(1 - x)) + (1 - x)/(x·(1 + x)·(1 - x)) - (1 + x)/(x·(1 + x)·(1 - x))
= (2·x + (1 - x) - (1 + x)) / (x·(1 + x)·(1 - x))
= 0 / (x·(1 + x)·(1 - x))
= 0