Aloha :)
1) Ist korrekt:$$(x^2x^3)^2=(x^2)^2(x^3)^2=x^{2\cdot2}x^{3\cdot2}=x^4x^6$$
2) Wenn dein \(y\) ein \(x\) sein soll, ist dein Ergebnis korrekt.$$\sqrt{x^2\cdot x^2}=\sqrt{x^2}\cdot\sqrt{x^2}=|x|\cdot|x|=x\cdot x$$Beachte bitte, dass die Wurzel immer \(\ge0\) ist, daher ist \(\sqrt{x^2}=|x|\) und nicht \(\sqrt{x^2}=x\).
3) Oha, hier hast du die 1-te binomische Formel übersehen:$$\phantom{=}(\underbrace{x^{-1}}_{=a}+\underbrace{y^{-1}}_{=b})^2=\underbrace{\left(x^{-1}\right)^2}_{=a^2}+2\cdot\underbrace{x^{-1}}_{=a}\cdot\underbrace{y^{-1}}_{=b}+\underbrace{\left(y^{-1}\right)^2}_{=b^2}=x^{(-1)\cdot2}+2(xy)^{-1}+y^{(-1)\cdot2}$$$$=x^{-2}+2(xy)^{-1}+y^{-2}$$
4) Hier hast du keine Punktrechnung, daher kannst du hier nichts vereinfachen:$$\sqrt{x-y}\ne\sqrt x-\sqrt y$$