Ich habe die Summe \(\left(\sum\limits_{k=1}^n \frac{1}{n+k}\right)\) durch INDEXVERSCHIEBUNG zunächst auf die grundlegende Gestalt gebracht, wie sie in der Induktionsbehauptung vorliegt:
\(S:=\sum\limits_{k=0}^{n-1} \frac{1}{n+1+k}\).
Jetzt stört aber die Indizierung, denn es wird in der Behauptung bei \(k=1\) angefangen zu zählen und man hört bei \(k=n+1\) auf. Also nehme ich von \(S\) den \(0\)-ten Summanden heraus:
\(S=\sum\limits_{k=0}^{n-1} \frac{1}{n+1+k}\\=\left(\sum\limits_{k=1}^{n-1} \frac{1}{n+1+k}\right)+\frac{1}{n+1}\).
In der großen Summe wird nur bis \(n-1\) hochindiziert. Also blähe ich jetzt die Summe mit einer addierten Null auf, indem ich zwei weitere Summanden der Form \(\frac{1}{n+1+k}\) für \(k=n\) und \(k=n+1\) in die Summe mit reinschreibe, aber sie außen wieder invers dazu addiere:
$$S=\left(\sum\limits_{k=1}^{n+1} \frac{1}{n+1+k}\right)+\Bigg[\underbrace{\frac{1}{n+1}}_{\text{0-ter Summand}}-\underbrace{\frac{1}{2n+1}}_{\text{n-ter Summand}}-\underbrace{\frac{1}{2n+2}}_{(n+1)-ter Summand}\Bigg]$$