0 Daumen
250 Aufrufe

Which of the following is the value of the limit \( \lim\limits_{n\to\infty} \) \( \sum\limits_{k=0}^{n-1}{} \) \( \frac{1}{n+k} \) ?


(Hint: Use Riemann sums.)


a.ln3

b.Does not exist.

c.ln2

d.∞

e.2/3

Avatar von

2 Antworten

0 Daumen

You can use Riemann sums as stated in the hint.
\(\begin{aligned} \lim_{n \to\infty} \sum_{k=0}^{n-1} \frac{1}{n+k} &= \lim_{n \to\infty} \sum_{k=0}^{n-1} \left(\frac{n}{n+k}\cdot \frac{2-1}{n}\right) = \lim_{n \to\infty} \sum_{k=0}^{n-1} \left(\left(\frac{1}{1+\frac{k}{n}}\right)\cdot \frac{2-1}{n}\right)\\&= \int_{1}^{2} \ln\left(x\right) \mathrm{d}x = \ln\left(2\right) \end{aligned}\)
whereby we considered a partition of the interval \([1, 2]\) into \(n\) equally spaced subintervals.

Avatar von 4,8 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community