Aufgabe:
Betrachten Sie die Menge Z×N mitsamt der Relation R : (Z×N)×(Z×N) → {w,f}, definiert durch:
∀(p, q),(r, s) ∈ Z × N : (p, q) ∼ (r, s) :⇔ R((p, q),(r, s)) = w :⇔ ps = qr.
(a) Zeigen Sie, dass R ist eine Aquivalenzrelation auf ¨ Z × N ist.
(b) Damit seien nun die rationalen Zahlen Q := Z × N/~ definiert. Zeigen Sie die Wohldefiniertheit (Unabhängigkeit vom Repräsentanten) der folgenden Verknüpfungen auf Q:
∀ [(p, q)] , [(r, s)] ∈ Q : [(p, q)] + [(r, s)] := [(ps + qr, qs)]
∀ [(p, q)] , [(r, s)] ∈ Q : [(p, q)] · [(r, s)] := [(pr, qs)] .
(Hinweis: Die Wohldefiniertheit der Verknüpfungen + und · ist durch folgende Aussage definiert:
Fur alle ¨ [(p, q)], [(r, s)], [(p´ , q´)], [(r ´ , s´ )] ∈ Q mit [(p, q)] = [(p´ , q´ )] und [(r, s)] = [(r´ , s´ )] gelten [(ps + qr, qs)] = [(p´ s´ + q´ r ´ , q´ s ´ )] und [(pr, qs)] = [(p ´ r ´, q´ s ´)].)