Hallo,
allgemein gilt:
\( \lim\limits_{n\to\infty} \) ( \( 1 +\frac{k}{n})^{n} \) =\( e^{k} \)
\( \lim\limits_{n\to\infty} \) (1+\( \frac{1}{3n-2} \) )^n
--------->
\( \frac{1}{3n-2} \) =\( \frac{k}{n} \)
n=k(3n-2)
k=\( \frac{n}{3n-2} \)
k= \( \frac{1}{3-\frac{2}{n}} \)
für n---->∞ : k =\( \frac{1}{3} \)
->
\( \lim \limits_{n \rightarrow \infty}\left(1+\frac{1}{3 n-2}\right)^{n}=\sqrt[3]{e} \)