Betrachten wir \(\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n, n}\).
\(\begin{aligned} (\mathbf{A}\mathbf{B})^{\mathsf{H}}_{i, j} = (\overline{\mathbf{A}\mathbf{B}})_{j, i} &= \overline{\sum_{k=1}^{n} (\mathbf{A})_{j, k} (\mathbf{B})_{k, i}} \\ &= \sum_{k=1}^{n}\overline{ (\mathbf{A})_{j, k} (\mathbf{B})_{k, i}} \\ &= \sum_{k=1}^{n}(\overline{\mathbf{A}})_{j, k} (\overline{\mathbf{B}})_{k, i} \\ &= \sum_{k=1}^{n} (\mathbf{A}^{\mathsf{H}})_{k, j}(\mathbf{B}^{\mathsf{H}})_{i, k} \\ &= \sum_{k=1}^{n}(\mathbf{B}^{\mathsf{H}})_{i, k} (\mathbf{A}^{\mathsf{H}})_{k, j} = (\mathbf{B}^{\mathsf{H}}\mathbf{A}^{\mathsf{H}})_{i, j} .\end{aligned}\)