Aloha :)
Gegeben sind eine Gerade \(G\) und eine Ebene \(E\):$$G\colon\vec x=\begin{pmatrix}-1\\0\\0\end{pmatrix}+r\begin{pmatrix}2\\6\\2\end{pmatrix}\quad;\quad E\colon 2x+y+z=4$$
Wir prüfen zuerst, ob die Gerade die Ebene irgendwo durchstößt. Dafür setzen wir die Koordinaten von \(G\) in die Koordinatengleichung von \(E\) ein:$$4\stackrel!=2\cdot(-1+2r)+(0+6r)+(0+2r)=-2+12r\quad\implies\quad r=\frac12$$Die Gerade schneidet die Ebene also genau in einem Punkt, nämlich in \(S(0|3|1)\).
Die Gerade liegt also nicht in der Ebene und verläuft auch nicht parallel zu ihr.