Aufgabe:
Abbildungen auf Linearität überprüfen:
f( \( \vec{x} \) ) = \( \vec{a} \) * I\( \vec{x} \)I
Laut Lösung ist es keine lineare Abbildung, wo ist mein Fehler?
Problem/Ansatz:
f(x+y)= Ix+yI * a = IxI*a +IyI*a =f(x) + f(y) wäre meine Idee. Ist aber falsch...irgendwie.
Die offizielle Lösung ist:
f(x+y)= Ix+yI * a ≤ (IxI + IyI) *a = IxI*a + IyI*a = f(x) + f(y)= h ->keine lineare Abbildung.
Vor allem verwirrt mich das ≤ und das =h am Ende.
Wieso ist es keine Lineare Abbildung? Und warum ist mein Ansatz falsch?