Dank den Vorarbeiten nun der Lösungsweg:
f(1) = 1 f(0) = 0 f´(0)=0 f'(2) = 0 f''(2) = 0
f(x)=a*x^4+b*x^3+c*x^2+d*x+e
f(1)=a+b*+c+d+e
1.) a+b+c+d+e=1
f(0)=e
2.)e=0
f´(x)=4a*x^3+3b*x^2+2c*x+d
f´(0)=d
3.)d=0
f´(2)=4a*2^3+3b*2^2+2c*2+d=32a+12b+4c
4.)32a+12b+4c=0 8a+3b+c=0
f´´(x)=12a*x^2+6b*x+2c
f´´(2)=12a*2^2+6b*2+2c=48a+12b+2c
5.)48a+12b+2c=0 24a+6b+c=0
a=\( \frac{3}{11} \) b=-\( \frac{16}{11} \) c=\( \frac{24}{11} \)
f(x)=\( \frac{3}{11} \) *x^4-\( \frac{16}{11} \)*x^3+\( \frac{24}{11} \)*x^2