Aufgabe:
Sei K ein Körper, V ein n-dimensionaler K-Vektorraum, U ein k-dimensionaler K-Untervektorraum von V und sei xk+1, . . . , xn ein fest gegebenes System von Vektoren in V. Sei ∆: Vn → K eine Determinantenfunktion. Zeigen Sie, dass durch
∆U : Uk → K, (u1, . . . , uk) → ∆(u1, . . . , uk, xk+1, . . . , xn)
eine Determinantenfunktion auf U definiert wird. Wann ist ∆U nicht trivial?